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Organic synthesis has greatly benefited from free 
radical reactions as is evidenced by their powerful 
applications to cyclization methodo1ogies.l Electronically- 
rich radicals such as ketyl radical anions are not as well- 
understood, and in particular, their inherent nucleophilic 
character remains unexploited.2 Synthetic reactions 
leading to ketyl radical anion intermediates by partial 
reduction or one-electron transfer to an aldehyde or 
ketone have been promoted photochemically, electro- 
chemically, and by  metal^.^ Allylic 0-stannyl ketyls, a 
resonance-stabilized radical anion species, are produced 
under mild free radical conditions by the reaction of a 
conjugated aldehyde or ketone with tributyltin radical 
(nB~3Sn*) .~-~  

Precursors used to form 0-stannyl ketyls generally 
have only one aldehyde or ketone to react with nBu&i'. 
Compound 1, however, bears a choice of two potentially 
reactive carbonyls. Previous studies and steric argu- 
ments might favor attack at  the aldehyde leading to 
0-stannyl ketyl addition to the @-olefin site or direct 
reduction to an alcoh01.~" Alternatively, nBu3Sn' attack 
at the cyclohexenone moiety in 1 affords resonance- 
stabilized allylic 0-stannyl ketyl 2 - 3 (Scheme 1). If 
hydrogen atom transfer occurs regioselectively at  the 
@-position of 3, a tin enolate 4 would be prepared by a 
novel approach. The resulting enolate can now undergo 
an intramolecular aldol with the tethered aldehyde to 
prepare the bicylic structure 5. The interesting combina- 
tion of free radical and enolate chemistry required in this 
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reaction exemplifies a new rapidly-emerging class of 
sequential one- and two-electron  reaction^.^ 

Herein we describe preliminary results for this new 
cyclization protocol where the annulation is the result 
of a directed tin aldol based on a two-electron mode of 
reactivity. These studies also introduce a mild alterna- 
tive to current enolate chemistry which avoids NaH, 
LDA, LHMDS, or other strongly reductive conditions 
such as dissolving metal media. To test this hypothesis, 
cyclohexenones were constructed bearing suitably teth- 
ered aldehydes as electrophiles, and their tin enolate 
cyclizations were then examined. To the best of our 
knowledge, neutral free radical approaches to aldol 
chemistry using nBu3SnH have not been examined. 

Aldol precursor 8, bearing an aldehyde tether in the 
C3-position on a cyclohexanone ring, was readily prepared 
from Grignard reagent 7 derived from 4-chlorobutanol8 
in a reaction with 3-ethoxy-2-cyclohexanone (61, followed 
by a standard Swern ~xidation.~ The tin enolate cycliza- 
tion was promoted by treatment of 8 with tributyltin 
hydride under free radical conditionslO which afforded the 
cis-decalone alcohol 9 in 81% yield (Scheme 2). Interest- 
ingly, three new stereocenters resulted from the cycliza- 
tion, one bearing the alcohol and two arising from the 
cis-decalin ring fusion. Only a single product could be 
isolated (>50:1), and other diastereomers could not be 
detected by NMR or chromatographic methods. To 
unambiguously ensure that the structure and stereo- 
chemistry were correct, a single crystal X-ray determi- 
nation was 0btained.l' Spiro-cyclization of the /3-carbon- 
centered radical of 8 with the tethered aldehyde may 
have been particularly blocked due to the formation of a 
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hindered quaternary center; thus, a second example 
where this was not possible was examined next. 

Aldehyde 13 bears a different pattern of substitution 
on the cyclohexenone and was constructed by adapting 
the general protocol of Becker.12 It was prepared from 
the Robinson-annulated product 1013 which was protected 
with concomitant olefin migration to afford 11 (Scheme 
3).12 Introduction of a four-carbon alcohol appendage by 
ozonolysis, reduction, and deprotection gave ketone 12.12 
Aldehyde 13, the 0-stannyl enolate precursor, was 
prepared by Swern ~xidat ion.~ We were pleased in this 
case to find that the tin hydride-mediated cyclization 
gave a seven-membered anniilated ring, constructing 
bicyclic alcohol 14 in 62% yield. As with the example 
above, no other diastereomers were present by GC, TLC, 
or NMR; however, some unreacted 13 remained (ca. 17%) 
in this case. Single crystal X-ray studies confirmed the 
stereochemistry of 14, in which the sterically congested 
hydroxyl was endo in the bicyclo[4.3.llnonane skeleton. 

Two chemical studies, shown in Schemes 4 and 5, were 
conducted which support the aldol cyclization by the 
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allylic 0-stannyl ketyl mechanism (Scheme 1). Com- 
pound 8 was reacted with tributyltin deuteride and 
formed only deuterated compound 15 after the reaction 
was stopped at  ca. 30% completion, as shown in Scheme 
4. This confirmed the regiochemically favored location 
of radical at  the ring juncture in the annulation reaction; 
however, it does not rule out the 0-stannyl ketyl forma- 
tion at the aldehyde. 

Thus, an alternative explanation for the cyclization is 
that the tin ketyl forms at  the aldehyde carbonyl site and 
cyclization occurs by attack at the a-position of the enone. 
This possibility cannot be ruled out, but seems unlikely, 
because an 0-stannyl ketyl is a nucleophilic radical and 
intramolecular attack at  the electrophilic P-position of 
the alkene should be f a ~ o r e d . ~ ~ , ~  Had this occurred in 
the case of 13, a six-membered ring, rather than the 
observed seven-membered ring, would have prevailed. 

A study to distinguish between the ketyls of the 
aldehyde and the 2-cyclohexenone compared 16 and 
decanal(l7) in a simple competition experiment, shown 
in Scheme 5. As predicted, 18 was formed more rapidly 
than 19, which suggests a preference for the resonance 
stabilized allylic 0-stannyl ketyl of the 2-cyclohexenone 
over the 0-stannyl ketyl of the aldehyde. The small 
amount of decyl alcohol (19) formed due to the dilution 
of the reaction mixture or from the slight excess (1.2 
equiv) of tin hydride used.14 On the basis of these 
observations, we propose that free radicals are not 
involved in the cyclization step, but rather it proceeds 
via the tin enolate (Scheme 1). 

In conclusion, a new free radical method for the 
construction of carbon-carbon bonds from allylic 0- 
stannylketyls has been developed. A directed aldol-type 
carbonyl addition promoted by nBuaSnH led to annulated 
cycloalkanols, where up to three new stereocenters 
resulted in a highly stereoselective manner. These 
studies provide a neutral method to prepare tin enolates 
which may have future applications to intermolecular 
aldol-type reactions. l4 
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